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Abstract. The question of the existence of multiple pure states in spin glasses and other 
disordered systems is considered. We show that the distribution of overlaps, P ( q ) ,  is an 
unreliable indicator of how many distinct pure states a system has. We discuss the definition 
of, and possible relations between, pure states. We also discuss the spin glass on a Bethe 
lattice and the infinite-range model, pointing out why their ordered phases are likely to be 
unlike that of realistic spin glass models. Various possibilities for the behaviour of 
finite-range spin glasses are discussed. 

Much recent theoretical activity on spin glasses has been focused on the question of 
the existence of many distinct stable thermodynamic states at low temperatures and 
magnetic fields. This was primarily stimulated by an ansatz of Parisi for the solution 
of the infinite-range Sherrington-Kirkpatrick ( SK) spin glass model [ 11, which indicates 
the existence of infinitely many states in a region of the magnetic field, H, and 
temperature T, plane [2]. On the other hand, recent work suggests that realistic spin 
glass models with finite-range interactions in a finite-dimensional space may well 
behave quite differently [3-51. In a companion letter [6], we discuss the consequences 
of this picture for pure states in realistic spin glass models. 

In this letter we discuss various general issues related to the question of pure states 
in spin glasses and other statistically translationally invariant (i.e. ‘stationary’) disor- 
dered systems. We first discuss the definition of pure states and possible relationships 
between distinct pure states, giving examples to illustrate the various possibiliites. We 
point out that the distribution of overlaps between replicas, P ( q )  [2,3], is not a very 
reliable indicator of the number of pure states in a system. We give examples in which 
P( q )  ( a )  ignores the presence of a physically important pure state and ( b )  gives the 
appearance of many states when only two are present. 

Recent work has shown that the spin glass on a Bethe lattice behaves very much 
like the SK model [7]. We explain why the Bethe lattice model, although it only has 
short-range interactions, may behave very differently from spin glasses on finite- 
dimensional lattices. We also discuss how the SK model is only related to a rather 
unphysical limit of realistic spin glasses as the dimensionality of the lattice d, tends 
to infinity. 

( i )  DeJinitions ofstates. First we must define ‘states’ and ‘pure states’ [8]. We are 
interested in the states in a single realisation of the quenched disorder in an infinite 
system. A state is defined in terms of the correlation functions in all Jinite regions 
obtained as the thermodynamic limit of an infinite sequence of boundary conditions. 
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Thus each state can be selected by a boundary condition arbitrarily far away. The 
linear combination of any two states is also a state, since it is selected by a linear 
combination of boundary conditions. Therefore the set of all states is convex. For 
any given state the correlation functions (expectation values of operators 0) in any 
finite region can be decomposed in the form 

(0) =c PLL,(O), 
U 

in terms of the pure (or extremal) states, a, which are the extremal elements of the set 
of all states, Note that only the thermal average is being performed here, not an 
average over disorder. A system that has many states must have the property that, 
even in the thermodynamic limit, the deep interior of the system remains very sensitive 
to boundary conditions. A ground state is simply a pure state at zero temperature. 
Ground states have the property that their energies cannot be lowered by altering the 
configuration in any finite region of the system. 

( i i )  Relationships between pure states. If a system has more than one pure state 
then one should ask what are the differences between the states. Let us consider two 
different pure states, a and p. There exist several possibilities. ( a )  Globally congruent: 
a and p are simply related by a global symmetry of the system. This is the case for 
most familiar long-range ordered states, e.g. crystals, ferromagnets, etc. The opposite 
extreme is that a and p are not even locally related by symmetry. This may occur in 
two ways. (6)  Dissimilar: a and p are unrelated by symmetry, and not even statistically 
similar. This occurs at many first-order phase transitions (e.g. liquid-vapour). ( e )  
Similar but incongruent: a and p are unrelated by symmetry but have the same (up  
to a global, possibly statistical, symmetry) spatially averaged correlation functions. 
This highly non-trivial possibility occurs in the random-field Ising model ordered 
phase, where only a statistical symmetry is broken. ( d )  Regionally congruent: finally 
it is possible that a and p are not globally congruent due to the existence of domain 
walls or other defects, but are locally related by symmetry almost everywhere, i.e. in 
all but a vanishing fraction of regions of the system. This occurs for a lattice Ising 
ferromagnet with a domain wall present which is smooth (i.e. at temperatures below 
its roughening transition) and thus disrupts the order only near a particular lattice 
plane. In addition to these basic distinctions, more complicated possibilities also exist, 
such as coexistence between congruent and incongruent states separated by interfaces; 
we will not dwell on these here. Note that a rough domain wall does not constitute 
a distinct pure state because it cannot be forced through a particular location by 
infinitely far boundary conditions. This is true for the usual thermally rough domain 
wall, as well as for domain walls that are rough at T = 0 due to disorder [9]. For any 
finite-size disordered ferromagnet in d s 3 (or d < 5 if the disorder is strong enough) 
[9] a rough domain wall can be forced through the system for T <  T,. However, with 
a probability which tends to unity as N + m ,  the domain wall will, for all boundary 
conditions, lie arbitrarily far away from any chosen point. Thus the correlation 
functions in any fixed finite region will be simply linear combinations of the up  and 
down magnetised states. 

( i i i )  P ( q ) .  The Parisi solution of the SK model ordered phase [ 2 ]  has been 
interpreted as indicating the existence, in the thermodynamic limit where the number 
of spins N + w ,  of many states, each labelled by an  index a and having total free 
energy Fe. The special properties of the Parisi solution [ 2 ]  depend on an  infinite set 
of states, each of which contributes a non-zero weight p, xexp( -F , /T )  to the unre- 
stricted Boltzmann average. In order for this to occur, the total free energy of each 
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of these states must differ from the lowest by only a j n i t e  amount in the thermodynamic 
limit. 

The properties of the states of the SK model have been probed by studies of the 
distribution of overlaps between two exact copies or replicas, a and b, of the same 
system [2]. The overlap between the configurations of the two replicas is 

q “ b  = (1/ N )  1 sps: 
I 

where the sum runs over all N pairs of spins, Sp9b= *l. The distribution of these 
overlaps is P ( q )  = [ ( S ( q  - q” ’ ) ) ] ,  where the angular brackets here denote independent 
Boltzmann averages over each system and the square brackets denote a configurational 
average over the disorder. For the Parisi solution of the S K  model, P ( q )  is, for T < T,, 
the sum of a continuous part and two delta functions, as shown in figure l ( a ) ,  which 
is interpreted as indicating the existence of infinitely many states with a continuous 
distribution of overlaps between states [2]. However, P ( q )  arises from a% Boltzmann 
average, so does not contain information about possible physically relevant pure states 
that have the same free energy per spin as the lowest free energy state but whose total 
excess free energy diverges (less rapidly than N )  as N + CO. Thus, even if P ( q )  consists 
of just one or two delta functions for a given system, as has been suggested for realistic 
spin glasses [3-51, this by itself does not rule out the existence of many states. (Note 
that differences in total free energy of states are not in general well defined; they 
depend on how the thermodynamic limit is taken.) 

9 

t 
a 

Figure 1. The form of the distribution P ( q )  of overlaps 9 for ( a )  the SK model ordered 
phase, ( 6 )  a random-field king model for all finite temperatures, 7‘3 T, or T <  T,, and 
( c )  an king ferromagnet with antiperiodic boundary conditions in all directions for T < T, 
and eirher T <  TR or T z  TR. The bold vertical lines denote delta functions. 

An example where P ( q )  is insensitive to the existence of an important pure state 
is a three-dimensional random-field Ising model at low temperatures, with a random 
field strength that is weak enough so that there is long-range ferromagnetic order [ 101. 
With either free or periodic boundary conditions the similar but incongruent ‘up’ and 
‘down’ magnetised states of this system differ in free energy by O ( N ” * )  due to 
fluctuations in the random fields. Hence, for N + CO, only one of them enters in P ( q ) ,  
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which is thus (even before configurational averaging) a delta function at 

q = N - '  ( S J 2  

at all temperatures, as shown in figure l ( b ) ,  with no qualitative change in its form at 
the ordering transition. In this example P ( 4 )  completely ignores the appearance of a 
new pure state. 

Not only can the function P ( q )  miss physically important states, it can also give 
the appearance of there being many states when there are not. An example is an 
exactly solvable two-dimensional Ising ferromagnet on a square lattice with antiperiodic 
boundary conditions in both directions. This system is uniformly frustrated on a global 
scale, much as the spin glass is randomly frustrated on local scales. For T < T,, this 
system orders with magnetisation * m everywhere except near a fluctuating domain 
wall which runs along one of the two diagonals of the lattice. For N + CO, as illustrated 
in figure l(c),  P ( q )  consists of the sum of a delta function at q = 0 with weight $, due 
to overlaps between configurations with domain walls oriented differently, and a 
continuous part running from - m 2  to +m2, due to configurations with parallel domain 
walls. This P(  q )  is qualitatively similar to that of the SK model order phase, although 
there are only the two distinct pure states with * m  magnetisation. For the analogous 
three-dimensional system P ( q )  will have precisely the same form both above the 
domain wall roughening temperatures, TR (but T < T,) where there are only two pure 
states, and below TR where there are an infinite number of pure states corresponding 
to different positions of the smooth domain wall. 

The reason why P(  q )  gives potentially misleading information in these examples 
is that it is too global a measurement. Therefore it is sensitive to the total free energy 
and misses completely stable and physically important pure states whose total excess 
free energy over the minimum free energy state diverges for N + CO. Because P ( q )  
only looks at the total overlap it is also not sensitive to the difference between a small 
overlap due to domain walls being present and a small overlap due to the two replicas 
being in incongruent states. Finally, in general, P ( q )  depends crucially on how the 
thermodynamic limit is taken (e.g. on the boundary condition). Note that it may be 
possible to eliminate pathologies such as that for the antiperiodic Ising model by 
modifying the definition of P ( q ) .  However, there may not be any limiting procedure 
short of using the exact states themselves which yields in the thermodynamic limit a 
mixture of the up and down states in the random-field Ising model. The same difficulty 
is likely to occur for any other system which exhibits similar but incongruent pure states. 

(iu) Bethe lattice. A spin glass on the Bethe lattice has recently been shown to 
exhibit many statistically similar pure states [7] and we show below that these states 
are generally incongruent. We argue that the presence of many pure states is due to 
the peculiarities of the Bethe lattice, and therefore should not be taken as an indication 
that many states are present on finite-dimensional lattices. To illustrate why there are 
many states for the Bethe lattice model, let us focus on the behaviour of a given pair 
of nearest-neighbour spins, Si and S,. The entire Bethe lattice may be broken into two 
parts, one containing site i and the other containing site j .  These two parts are only 
connected by the bond between sites i and j (note that no physically realistic lattice 
with d 3 2 has this property). We assume fixed-spin boundary conditions arbitrarily 
far away. By summing over all configurations of the spins in each part of the lattice 
for each orientation of Si and S,, we obtain effective fields on each spin which are 
functions of the particular boundary conditions, B. From this we obtain an effective 
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Hamiltonian for the spins we are focusing on: Idefi = -JvSiSj - h,(  B ) S i  - hj( B ) S j  where 
the effective fields h i J ( B )  are independent. The distribution of effective fields can, in 
principle, be obtained as in [7] and is non-trivial for T <  T,. For O <  T <  T, the 
correlation function ( SiSj) therefore depends on the boundary conditions for all pairs 
of spins, (For T = 0 this dependence may be confined to a non-zero fraction of such 
pairs.) Thus for two typical uncorrelated boundary conditions (S iSj )  will differ for all 
pairs of spins. This demonstrates the system’s extreme sensitivity to distant boundary 
conditions and shows that states with different boundary conditions are generally 
incongruent. It is clear that the peculiarities of the Bethe lattice are instrumental in 
allowing this sensitivity. 

Recent work on the ordered phase of short-range Ising spin glass models on 
finite-dimensional lattices has emphasised the role of droplet [4] and domain wall [ 111 
excitations and their energetics. The free energy cost to pass a domain wall across a 
finite hypercubic sample of size N = Ld spins appears to scale as Le = N*Id for N + CO, 

with 6 > 0 for d s 3 [ 113. From the above discussion it is clear that a domain wall can 
be passed across an infinite Bethe lattice at Jinire energy cost by passing it through 
only one bond. Therefore we see that the analogous exponent satisfies ( 6 / d ) s O  for 
the Bethe lattice. This is important in allowing different boundary conditions to stabilise 
many different states, as discussed above. 

Another important scale is the energy cost of flipping the lowest energy droplet of 
N spins in a particular region of the interior of a much larger system [4]. For 
finite-dimensional lattices we expect this droplet energy to scale as NB’Id,  with e ‘=  6, 
since the domain wall surrounding the droplet is very similar to the domain walls 
across finite systems discussed in the previous paragraph [4]. We have argued that 
6 ‘ / d  < i, which via an Imry-Ma [ 101 argument implies that there is no spin glass order 
in the presence of a magnetic field, i.e. no de Almeida-Thouless [12] transition [4]. 
For the Bethe lattice, on the other hand, the energy cost to produce a droplet excitation 
of N spins is clearly much more than that of passing a domain wall across a finite 
lattice of N spins, since the former domain wall must cross more than N bonds, while 
the latter may cross only one. Thus we expect 6 ’ / d  > 6 / d .  A simple calculation, similar 
to those in [7], shows that the average energy to flip N connected spins, allowing 
nearby relaxations, is proportional to N, i.e. 6 ‘ / d  = 1. This means that, in some sense, 
the system has a surface tension. It is consistent with the presence of a de Almeida- 
Thouless transition [7]. Therefore we find that the energies of low-lying excitations 
for the spin glass on a Bethe lattice behave very differently from what we expect for 
spin glasses on finite-dimensional lattices, even in the limit d -$ CO. The difference is 
not surprising, since finite-dimensional lattices have frustration loops on all length 
scales, while the Bethe lattice does not have any loops at all and is only frustrated due 
to the boundary conditions. 

( U )  SK model. It is also worthwhile considering the relationship between the SK 

model [ l ]  and spin glasses with short-range interactions in the limit d +CO. The SK 
model consists of N spins, all pairs of which interact with identically distributed 
couplings. A physical representation of this is N spins forming a single ‘hypertetrahe- 
dron’ (all spins equidistant from one another) in a d = ( N  - 1)-dimensional space. 
Such hypertetrahedral units may be packed to form a hypertetrahedral lattice (for 
d = 2, the triangular lattice; for d = 3, the FCC lattice, etc) on which a spin glass model 
with only nearest-neighbour interaction may be considered. The nature of the long- 
range spin glass order that might occur on such a lattice is determined by correlations 
between spins separated by many hypertetrahedral lattice units. Thus it is clear that 
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the SK model, being a model of a single isolated unit of size one lattice spacing, does 
not model the long-range order that is present at low temperatures in spin glasses with 
short-range interactions for d +CO. It is only a model of possible short-range order on 
length scale one lattice spacing. Note that it might already be helpful to understand 
the behaviour for the length two lattice spacings for d + W .  

One might object to the previous paragraph on the grounds that infinite-range 
models give correct descriptions of ordered phases in all well understood models. 
However, for mean-field theories of ferromagnets, for example, we can consider the 
coordination number z and the system size, N, to be large tndependenrly so that with 
N >> z >> 1 a large high-dimensional system is modelled. In this case the same limit is 
reached for bulk properties, independent of how the limit N + a, z + a is taken. For 
spin glasses, on the other hand, there is no reason to believe that this is the case. 
Indeed the nature of frustration in spin glasses suggests the contrary. Even for 
conventional systems infinite-range models miss any spatial structure of ordered states. 
Examples are domain walls in Ising models and defects and textures in X Y  or 
Heisenberg ferromagnets. The analogous low-lying excitations, namely droplet excita- 
tions and  spin waves, respectively, are also absent in an  infinite-range model. Since 
the differences between incongruent pure states in short-range spin glasses (if they 
exist) must be precisely such domain walls, defects and textures [13], one has reason 
to believe that the S K  model is not a reliable indicator of how many pure states exist 
in realistic spin glasses. The infinite-range models do give the correct critical behaviour 
for large d, however, and there is no indication that this does not remain true for spin 
glass models (although one might worry about the influence of Griffiths’ singularities). 
If it is true, it is presumably because spatial fluctuations are unimportant at the fixed 
point governing the critical behaviour for large d. For the spin-glass ordered pt.ase, 
on the other hand, there is competition due to frustration on all length scales which, 
we argue [4,6], results in a non-trivial behaviour for all d that is not captured, even 
in the limit d +CO, by the SK model. For example, if there are many pure states in the 
S K  model, the distinction between incongruent and regionally congruent states as 
defined above does not even exist due to the lack of a sensible definition of ‘locally’. 

( v i )  Conclusion. The natural possibilities for the existence of distinct pure states 
for realistic Ising spin glasses are as follows. 

( a )  A unique state for all T >  0 and magnetic field H. 
( b )  Exactly two states for H = 0 and T < T, which are globally related by a spin 

flip and therefore congruent. In  this case we have previously argued [4] that there is 
a unique state for H > 0 because e /  d < 4. 

( c )  For T < T, and H = 0, many domain wall states which are regionally congruent, 
in which case again there is a unique state for H > 0, since B / d  <;. 

( d )  Several, or many statistically similar but incongruent, states for T <  T,, in 
which case there could still be more than one state for sufficiently small non-zero H 
and thus a d e  Almeida-Thouless transition [12]. 

Possibility ( a )  is almost certainly correct for small d,  particularly d = 2 .  In a 
companion letter [6], based on a simple scaling ansatz, we argue that possibility ( 6 )  
is the most plausible for all d (presumably d 3 3 )  for which T,> 0. Unless possibility 
( d )  obtains, however, the relationship between states in finite-range spin glasses will 
not be very different from that in more conventional systems, since possibility (c )  
obtains for, e.g., Ising ferromagnets at T < T R .  

We thank J T Chayes and  L Chayes for stimulating interactions and P C Hohenberg, 
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